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Theoretical analysis of the deflection test 
used in single-surface oxidation of metallic 
samples 
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On the basis of the experimental results on deflection obtained by Delaunay during 
single-surface oxidation of metallic samples, a theoretical analysis of this deflection test 
was carried out. Two important problems were established concerning the physical 
signification of the oxide stress calculated from the measured deflection and the relation 
between the oxide adherence and the oxide stress. In particular, it appears that the oxide 
stress level determined by the deflection test is only representative of the stresses relieved 
by the sample curvature. Secondly, spalling of the oxide layer is directly related to the 
product of the residual stress value by the curvature of the sample. Some experimental 
results, recently obtained, confirm this theoretical analysis. 

1. Introduction 
Spalling of oxide scales is a disastrous phenomenon 
in the protection from corrosion of metallic 
materials and the mechanisms of adherence loss 
are virtually unknown in most cases [1]. There- 
fore, it is necessary to draw attention to the study 
of adherence phenomena. Oxide scales developed 
on metallic substrates by oxidation can be 
destroyed during either isothermal oxidation or 
cooling. The internal stresses are considered to 
be the chief cause of oxide spalling. The limited 
amount of experimental apparatus [2, 3] allowing 
the measurement of the internal stresses of oxide 
scales, explains why few studies have been done, 
to date, in order to pinpoint spalling mechanisms. 
One method mainly used for stress measurement 
(X-ray diffraction [4,5]), cannot yield infor- 
mation on stresses developed during isothermal 
oxidation at high temperature, but only on residual 
stresses in the oxide scale after cooling. Other 
methods, based on numerical calculation, such 
as the deflection test on thin samples selectively 
oxidized on one face [2, 3, 6, 7] only allow quali- 
tative and comparative studies. In order to extend 
the possibilities of such techniques, many theoreti- 
cal studies must be undertaken: it is essential to 

determine the physical meaning of the stress 
calculated from the deflection values and to pin- 
point deformation processes and the relationship 
to oxide scale adherence. In this paper, on the 
basis of experimental results obtained by Delaunay 
and Norin [2,3, 6, 7] we attempt a theoretical 
analysis of the deflection test in single-surface 
oxidation (the so-called DTMO) and to confirm 
this analysis by some new experimental results. 

2. Theoretical analysis 
2.1. Physical meaning of the stress 

calculated from deflection tests 
The experimental system used in DTMO is first 
examined. The examined sample (45 mm x 5 mm x 
0.15 mm) (Fig. 1) is first covered on one face by a 
thin SiO2 layer (~ 500 nm thick) which protects it 
from further oxidation. Another face is then 
polished and the specimen submitted to oxidation. 
When oxidation is taking place, oxide scale grows 
on the unprotected face and stresses are partially 
relieved by the curvature of the duplex sample, 
metallic substrate and oxide scale. The apparatus 
described by Delaunay et  al. [2,3] allows the 
measurement of deflection, D. 

Assuming that the SiO2 protective layer has 
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Figure 1 Specimen used in the deflection test. 

no effect on the system, the sample can be con- 
sidered to be a two-part specimen and, on account 
of  the differences in physical properties and of 
the possibilities of coherence relations between 
the two parts, such specimens can bend towards 
either the Si02 or the oxide layer. For given 
values of Po~, T, t, L (metallic sample length), 
Xm (metaUic sample thickness), Xox (oxide 
thickness), a value of the deflection, D, is deter- 
mined. 

In order to determine the nature and physical 
meaning of the stress which induces the deflection, 
we considered an imaginary system consisting of 
two layers whose dimensions are, respectively, 
L • b x Xm and L x b • Xox, and which is similar 
to the experimental system. Imaginary stresses 
ore(x) and Oox(z ) are, respectively, applied to the 
metallic substrate and to the oxide layer in order 
to bend this imaginary specimen (Figs. 2 and 3) 
under the same conditions operating for the 
experimental sample. The values of  these stresses 
may be calculated by the infinite elements 
method. With the assumption that the specimen 
bends by elastic deformation (o = Ee), the stress 
values are given by*: 

xLD 
~176 = - -  E gL--H Xo---~ 

and 
2D 

o111 = e -  xm) 

In the case of plastic deformation, by writing 
Holloman's law g = ke r, thent: 

Oox = -- km (r + 1) (r + 2)Xox 

~m =kin ~ r+e] 

*See Appendix I. 
tSee Appendix II. 
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tqgure 2 Imaginary system. 

where k m and r are the consolidation coefficients 
of the metallic substrate. These values of %x and 
e m correspond to the stresses applied to the 
imaginary system in order to bend it under the 
same conditions as the true specimen. However, 
the experimental specimen is not submitted to 
external stresses. Therefore, what is the corre- 
spondence of the additional stress in the true 
system? It is necessary to consume energy in 
order to bend the imaginary system while the 
true sample bends itself. Thus, we can say that 
the imaginary system consumes external stress 
and the true specimen internal stress. Thus, the 
measured deflection is a manifestation of oxide-  
substrate internal stresses. By the empirical Norin's 
formula: 

E XZm D 
a~ - 1 - - v  2 3L 2Xox 

it was possible to calculate Cox, when D and Xox 
were determined. This stress value, so calculated, 
is only relative to a part of the internal stresses 
(or an amount of  internal energy) which is relieved 
by the curvature of the specimen. We term this 
accommodated stress, 04. The value of % does not 
represent the total internal stress. In the specimen, 
other stresses can be relieved by other methods, 
such as recrystallization, and it subsists a residual 
internal stress which we term at. 

Thus, with the assumption that all internal 
stresses proceed from oxidation (no other source 
of internal stress), we can say that Oa, measured 
by DTMO, is a part of the internal stress created 
by oxidation. In addition, with the assumption 
that there is no other phenomenon able to relieve 
the internal stresses, we can write: 

a t = a a q - O  r 

where a t is the total imzrnal stress. 
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Figure 3 Schematic illustration of the strength 
distribution (F(x)) along the arbitrary axis. 

2.2. Relation between oxide scale spalling 
and aa 

If  we examine Fig. 3, it can be seen that the oxide 
scale spaUing is caused by the F(x) strength 
applied at the oxide-substrate interface. By using 
the formula o t = o r + aa, the greater the o a value, 
the smaller the o r value for a given oxide thickness 
Xox, and so the smaller the F(x) value. But, with 

Norin's formula, the greater the a a value, the 
greater the D/Xox or da/dL values, and so the 
greater the F(x) value for a given Xox value 
(Fig. 4). By considering that da/dL increases 
slowly while o~ decreases rapidly when o a in- 
creases, we can conclude that the experimental 
Om~ peak observed (Fig. 4a) does not correspond 
to a o value for which the oxide scale will be 
damaged by spalling. Oxide scale spalling will 
appear at a high value o f  Or, i.e. when Oa ~ O'int. or 
when Xo= is higher than a given value which is 
not easy to determine. From a theoretical point 
o f  view, oxide scale spalling is related to the 
product ar(da/dL). 

Our theoretical analysis allows one to under- 
stand the physical meaning of  o calculated by 
Norin's formula from DTOM and, consequently, 
to resolve the difficult interpretation o f  the Oma x 
peak observed by Delaunay and Norin for a small 
oxide scale thickness. This Oma x value only indi- 
cates that for a small oxide thickness, most of  
the stresses are relieved by deflection. Spalling 
will occur much later, when o r and da/dL will be 
important. 

3. Conf i rmat ion  of  analysis by 
exper imenta l  results 

In order to confirm this analysis, we have carried 
out some experimental deflection tests on the 
same apparatus as Delaunay [2, 3] using two 
different alloys: FeCr23Als and a Ni76Cq6Fe8 
(Inconel 600), alloys which, respectively, develop 
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Fi&ure 4 (a) Curve o f  a = f ( X o x ) :  o a is obtained f rom the results o f  De]aunay et aL [2, 3 ] ,  o r is a theoret ical  curve 
and o t the curves due to o a + o r. (b) Curves o f  o r or  Z o x  or  ( 1 / X o x ) ( d e / d L )  = f ( oa ) ;  the f irst is a theoret ical  curve 
whi le  the others are taken f rom Delaunay's results and Norm's formula [2, 3, 6, 7]. 
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by oxidation an inner protective scale of A1203 
and Cr203 [8-10] .  Our results are shown in 
Figs. 5 to 9. For the FeCrAt alloy, we observed 
that the relieved stress, %,* is a linear function 
of Xox (Fig. 7), with a high slope, during iso- 
thermal oxidation. This shape is related to the 
fact that the specimen deflection begins only 
when oxidation kinetics have reached a steady 
state due to alumina growth (A on Fig. 6). While 
the total internal stresses are created simultan- 
eously by oxidation, the manifestation of cr a, 
i.e. the stress accommodation by the sample 
curvature, only appears after some oxidation 
time. This phenomenon shows that the stress 
calculated from DTOM is only a part of the 
total stress created by oxidation. 

For the NiCrFe alloy, the deflection test 
does not induce sample curvature during iso- 

Figure 5 Curve of D =f(t)  obtained for a 
FeCr~3A1 ~ sample (pre-treated at 1000~ 
then protected on one face by a SiO 2 layer 
and submitted to the deflection test for 1 h 
at 1000 ~ C under pure 02 . 

thermal oxidation at 1000~ (Fig. 8), but an 
important value of D is recorded during slow 
cooling. This deflection is a linear function of 
the temperature decrease. By assuming that 
the internal oxide stresses during cooling are 
related to the difference of contraction coeffic- 
ients of the oxide and the metallic substrate, 
we developed a formula which allows one to 
calculate D during cooling (see Appendix III): 

[ D = (O~rn - - % x )  4q Eox 

where To is the isothermal oxidation tempera- 
ture, T the temperature at time t, am, %x, the 
metallic and oxide linear expansion coefficients, 
respectively, E, Eox, Young's modulus of  the 
metal and oxide, respectively, and Xm, Xox, the 
thickness of  the metal and the oxide, respectively. 
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Figure 6 Thermogravimetric curve ob- 
tained on FeCrA1 sample oxidized in 
the same conditions as for DTMO 
(Fig. 5). 

*% curve is obtained by using the Norin formula and the experimental results of deflection (Fig. 5) and of thermo- 
gravimetry (Fig. 6). 

3169 



3.0  

A 

o 
2 . [  

x 
lu  

x 

I.C 

tl 
0.1 

I I 

0 0,05 0.15 

Xox (p.m) 
0.20 

Figure 7 Curve of aox =/(Xox) obtained 
from curves of Figs. 5 and 6, for a FeCrA1 
sample oxidized on one face at 1000 ~ C. E, 
the Young's modulus of the alloy at the 
oxidation temperature, has the same unit 
as Oox. 

There is a good agreement between this for- 
mula and the results obtained with the Inconel 
600 (Fig. 9). Nevertheless, the theoretical esti- 
mation of  the slope of  the curve D = f(To - - T )  
is twice that of  the slope of  the experimental 
curve of  Fig. 9. This discrepancy confirms our 
theoretical analysis of  DTMO. Sample defection 
is due to accommodation of  a part of  stresses On, 
according to the formula o t = o a + or, and resid- 
ual stresses subsist in the specimen; this analysis 
explains the difference between the theoretical 
and experimental slope of  curves D = f ( T 0 -  T). 
Moreover, we confirm, by X-ray diffraction, that 

samples oxidized in conditions o f  DTMO, then 
cooled, contained residual stresses. Indeed, oxide 
o f  Inconel alloy was found to be submitted 
to compressive stress at 20~ with a value of  
--  15.8 x 10-4Eo=. Again, this result confirms 
the formula o t = o a + a r. 

4. Conclusion 
A theoretical analysis of  DTMO elucidated the 
physical meaning of  the stress calculated on the 
basis of  the deflection test. This oxide internal 
stress is a part of  the total internal stress of  the 
oxide layer, the part which is relieved by the 
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Figure 8 Curve of D = f ( t)  obtained on a Ni76Cr16Fe8 alloy oxidized for 1 h at 1000~ and cooled under 0 2 in the 
deflection apparatus. 
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Figure 9 Experimental curve of D = f ( T  o -- T) obtained 
from that part corresponding to the cooling of the curve 
of Fig. 8 (Inconel alloy). 

deflection of  the specimen and which we term 
o a. Under such conditions, we can write: at = 
% + o r. In addition, the oxide scale spalling is 
related to the product o r (da/dL). Deflection 
measured during cooling is directly related to 
the differences o f  oxide and metal contraction 
coefficient and of temperature. 

This theoretical analysis allows an interpre- 
tation of  the experimental results obtained by 
Norin and Delaunay and is confirmed by our 
own experimental results. 

Appendix I Relation between the 
deflection D and the oxide and metallic 
sample stresses in case of elastic 
deformation 
Assumptions: 

1. the specimen curvature can be considered as 
a circle taking into account D ~ L ; 

2. the stresses applied to the imaginary system 
can be described by: 

8 =  0 

0 

since, in this case, X m ~ b and b <.% L / 4 .  

Considering that, under equilibrium conditions, 
the sum of  the deflection moments must be equal 
to zero at point A (Fig. 1) and along the interface 
plane (X = X m, z = 0) (Fig. 2), and that the sum 
of  the strengths F1 and F2 in the direction of  the 
arbitrary axis (Fig. 3) must also be equal to zero, 
we can write: 

f X o x  g ~ 
0 Jo ( a~  cos a d a R  sin a 

Xmf c~m 
+ (arab dx) cos a d a R  sin a = 0 

0 0 

f X o  x X m 
+foJ a m b d X ( X  m - - x )  = 0 aoxb dZ z 

0 

fXo fOm + o o x b d z d a  = 0 
-10 .J0 

The first and the third equilibrium equations 
lead to: 

;? 0 aoxdz + a m d x  = 0 (A1) 

and the second to: 

o ~176  + Urn(Xm - - x ) d x  = 0 

(A2) 

The expressions for Oox and o m, using Hooke's 
law and assumption 1, can be written as (cf. 
Fig. 2): 

Oox = Eox ~-~(z --X1) (A3) 

2D 
Om = E ~ ( x - - X 2 )  (A4) 

Solution of  these equations gives the values of  
Xl and X2" 

3 2 3 7 (2  E X  m + E o x ( 3 X m X o x  -- 4Xox ) E m 
X1 = - - ~ -  - -  

6 E o x ( X m X o x  -- Xox ) 6EoxXox 

, + �89 (AS) 

EoxXo3 x + E ( 2 X 2 m  - -  3XoxX2m) 

(A6) 

Thus in the case of  elastic deformation, the 
stresses needed to bend the imaginary system are 
given by: 
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[ D X2m +Eox~T(Xox_2Z) ] Oo=(Z ) = -- EL2 3Xox 
(A7) 

2D 
Om(X ) = E ~ (X - -  ~Xm) (A8) 

If we consider that E ~ Eox and Xox < X m, the 
second term may be neglected in Equation A7, 
then: 

DX m 
aox(Z) = aox = -- E 3L-- ~ Xo--- ~ (g9) 

Appendix II Relation between D and 
Oox, Orn in the case of plastic deformation 
In this case, by applying Holloman's law, o = ke r, 
the only difference consists in Equations A3 and 
A4 which become: 

(W (z-x,). ~ = Kox/L= / 

(7 m ---- K m ~ ( x - - X 2 )  r (B2) 

where n and r are the consolidation coefficients of 
the oxide and the metallic substrate, respectively. 

The solution of Equations A1, A2, B1 and B2 
gives the following results, taking into account 
that Xox <Xm:  

B r~..m*l 
(-XO"~---A(r+ O(r+ 2)Xox (B3) 

X2 ~ Xm (B4) 
r + 2  

with 

and / X  r 

B = K m I~@) 

So, by writing (z --Xl) n ~(--X1) n (cf. Fig. 2: 
Zma, = Xox "~ X~), we have: 

Oox = -- Km L-~ (r + 1) (r + 2) Xo= 

( 2 L ) r  ( X _  X m l r  (B5) 
ore(x) = Km L-2 r + 2] (B6) 

Appendix III Relation between the 
deflection D obtained during cooling and 
the expansion coefficients oL m and %x 
Assumptions: 

1.at the 
L m = L o ;  
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oxidation temperature To: Lox = 

Z o x  

Lm 

According to 
adherence, 

2. during cooling, oxidation no longer occurs, 
or Xox and Xra are considered as constant; 

3. the assumptions of Appendix I hold. 
Let us consider two foils characterized by 

an identical initial surface (L0 • b X Xm) and 
(Lo x b x Xox), and by their linear expansion 
coefficients am and aox, respectively; when the 
temperature decreases from To to T, their lengths 
will be given by: 

= L0 [1 + aox(T-- To)] (C1) 

= Lo [1 + am(T-- To)] (C2) 

the fact that, in case of a good 

Lox(1 + e'ox) = Lm(1 + e~) (C3) 
p 

where Cox and e~n are the values of the foil's defor- 
mation at the interface plane. By using Equations 
A3 to A6 and Hooke's law (o = Ee): 

--L --52D( E _. -21 ) e'ox = + Xox (C4) 

4D 
em 3Lr Xm (C5) 

where L is the mean value of Lox and L m. 
The solution of Equations C1 and C5 gives 

(with Xox ~ X2m/Xox) : 

D = (am--aox 4- tEo  x 
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